|
|
||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.1abs absolute value functionCategory. Mathematics. Abstract. Absolute value: definition, plot, properties and identities. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionAbsolute value function is defined as |x| = x for x ≥ 0;|x| = −x for x < 0. 2. PlotAbsolute value function is defined everywhere on real axis. Its plot is depicted below — fig. 1. Fig. 1. Plot of the absolute value function y = |x|.Function codomain is non-negative half of the real axis: [0, +∞). 3. IdentitiesFunction is symmetrical: |−x| = |x|Sum and difference of arguments: |x + y| = |x| + |y|, if signx = signy|x + y| = ||x| − |y||, if signx ≠ signy |x − y| = ||x| − |y||, if signx = signy |x − y| = |x| + |y|, if signx ≠ signy Product and ratio of arguments: |xy| = |x||y||x /y| = |x| /|y| 4. SupportAbsolute value function abs of the real argument is supported by free version of the Librow calculator. Absolute value function abs of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate absolute value of the number:
To calculate absolute value of the current result:
To calculate absolute value of the number x in memory:
|
||||||||||||||||||||||||||
|