The Art of Interface

Article 11 — Appendix A.11

arsech or arsch — arc-hyperbolic secant function

Category. Mathematics.

Abstract. Arc-hyperbolic secant: definition, plot, properties and identities.

Reference. This article is a part of Librow scientific formula calculator project.

1. Definition

Arc-hyperbolic secant is inverse of hyperbolic secant function. With the help of natural logarithm it can be represented as:

arsechx ≡ ln{[1 + √(1 − x2)] /x}

2. Plot

Arc-hyperbolic secant is monotone function defined in the range (0, 1], point x = 0 is singular one. Its plot is depicted below — fig. 1.

Fig. 1. Plot of the arc-hyperbolic secant function y = arsech x. Fig. 1. Plot of the arc-hyperbolic secant function y = arsechx.

Function codomain is non-negative part of real axis: [0, +∞).

3. Identities

Reciprocal argument:

arsech(1/x) = arcoshx

Sum and difference:

arsechx + arsechy = arsech(xy /{1 + √[(1 − x2)(1 − y2)]})
arsechx − arsechy = arsech(xy /{1 − √[(1 − x2)(1 − y2)]})

4. Support

Arc-hyperbolic secant function arsech or arsch of the real argument is supported by free version of the Librow calculator.

Arc-hyperbolic secant function arsech or arsch of the complex argument is supported by professional version of the Librow calculator.

5. How to use

To calculate arc-hyperbolic secant of the number:

arsech(1);

To calculate arc-hyperbolic secant of the current result:

arsech(rslt);

To calculate arc-hyperbolic secant of the number x in memory:

arsech(mem[x]);