|
|
||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.14cosh or ch hyperbolic cosine functionCategory. Mathematics. Abstract. Hyperbolic cosine: definition, plot, properties and identities. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionHyperbolic cosine is defined as coshx ≡ (ex + e−x) /22. PlotHyperbolic cosine is symmetric function defined everywhere on real axis. Its chain-line plot is depicted below — fig. 1. Fig. 1. Plot of the hyperbolic cosine function y = coshx.Function codomain is range [1, +∞). 3. IdentitiesBase: cosh2x − sinh2x = 1Connection to exponential function: sinhx + coshx = excoshx − sinhx = e−x By definition: coshx ≡ 1 /sechxProperty of symmetry: cosh−x = coshxHalf-argument: cosh(x/2) = √[(coshx + 1) /2]coshx = [1 + tanh2(x/2)] /[1 − tanh2(x/2)] Doulbe argument: cosh(2x) = sinh2x + cosh2xcosh(2x) = 2 cosh2x − 1 cosh(2x) = 2 sinh2x + 1 Triple argument: cosh(3x) = 4 cosh3x − 3 coshxQuadruple argument: cosh(4x) = 8 cosh4x − 8 cosh2x + 4 = 8 cosh2x sinh2x + 1 = 8 sinh4x + 8 sinh2x + 1Power reduction: cosh2x = (cosh(2x) + 1) /2cosh3x = (cosh(3x) + 3 coshx) /4 cosh4x = (cosh(4x) + 4 cosh(2x) + 3) /8 cosh5x = (cosh(5x) + 5 cosh(3x) + 10 coshx) /16 Sum and difference of arguments: cosh(x + y) = coshx coshy + sinhx sinhycosh(x − y) = coshx coshy − sinhx sinhy Product-to-sum: coshx coshy = [cosh(x + y) + cosh(x − y)] /2sinhx coshy = [sinh(x + y) + sinh(x − y)] /2 Sum-to-product: coshx + coshy = 2 cosh[(x + y) /2] cosh[(x − y) /2]coshx − coshy = 2 sinh[(x + y) /2] sinh[(x − y) /2] 4. SupportHyperbolic cosine function cosh or ch of the real argument is supported by free version of the Librow calculator. Hyperbolic cosine function cosh or ch of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate hyperbolic cosine of the number:
To calculate hyperbolic cosine of the current result:
To calculate hyperbolic cosine of the number x in memory:
|
||||||||||||||||||||||||||
|