|
|
|||||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.15cos trigonometric cosine functionCategory. Mathematics. Abstract. Trigonometric cosine: definition, plot, properties, identities and table of values for some angles. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionCosine of the angle is ratio of the adjacent leg to hypotenuse. 2. PlotCosine is 2π periodic function defined everywhere on real axis — so its wave-like graph spreads endlessly to the left and to the right. Fig. 1. Plot of the cosine function y = cosx.Function codomain is limited to the range [−1, 1]. 3. IdentitiesBase: sin2φ + cos2φ = 1and its consequences: cosφ = ±√(1 − sin2φ)cosφ = ±1 /√(1 + tan2φ) cosφ = ±cotφ /√(1 + cot2φ) cosφ = ±√(csc2φ − 1) /cscφ By definition: cosφ ≡ 1 /secφProperties — symmetry, periodicity, etc.: cos−φ = cosφcosφ = cos(φ + 2πn), where n = 0, ±1, ±2, ... cosφ = −cos(π − φ) cosφ = −cos(π + φ) cosφ = sin(φ + π/2) Half-angle: cos(φ/2) = ±√[(1 + cosφ) /2]cosφ = [1 − tan2(φ/2)] /[1 + tan2(φ/2)] Double angle: cos(2φ) = cos2φ − sin2φcos(2φ) = 2 cos2φ − 1 cos(2φ) = 1 − 2 sin2φ sin(2φ) = (1 − tan2φ) /(1 + tan2φ) Triple angle: cos(3φ) = cos3φ − 3 sin2φ cosφ = 4 cos3φ − 3 cosφQuadruple angle: cos(4φ) = 8 cos4φ − 8 cos2φ + 1Power reduction: cos2φ = [1 + cos(2φ)] /2cos3φ = [3 cosφ + cos(3φ)] /4 cos4φ = [3 + 4 cos(2φ) + cos(4φ)] /8 cos5φ = [10 cosφ + 5 cos(3φ) + cos(5φ)] /16 sin2φ cos2φ = [1 − cos(4φ)] /8 sin3φ cos3φ = [3 sin(2φ) − sin(6φ)] /32 sin4φ cos4φ = [3 − 4 cos(4φ) + cos(8φ)] /128 sin5φ cos5φ = [10 sin(2φ) − 5 sin(6φ) + sin(10φ)] /512 Sum and difference of angles: cos(φ + ψ) = cosφ cosψ − sinφ sinψcos(φ − ψ) = cosφ cosψ + sinφ sinψ Product-to-sum: cosφ cosψ = [cos(φ − ψ) + cos(φ + ψ)] /2sinφ cosψ = [sin(φ + ψ) + sin(φ − ψ)] /2 Sum-to-product: cosφ + cosψ = 2 cos[(φ + ψ) /2] cos[(φ − ψ) /2]cosφ − cosψ = −2 sin[(φ + ψ) /2] sin[(φ - ψ) /2] cosφ + cos(φ + ψ) + cos(φ + 2ψ) + ... + cos(φ + nψ) = sin[(n + 1) ψ/2] cos(φ + nψ/2) /sin(ψ/2) Cosine of inverse functions: cos(arccos x) ≡ xcos(arcsinx) = √(1 − x2) cos(arctan x) = 1 /√(1 + x2) Some angles:
4. SupportTrigonometric cosine function cos of the real argument is supported by free version of the Librow calculator. Trigonometric cosine function cos of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate cosine of the number:
To calculate cosine of the current result:
To calculate cosine of the angle φ in memory:
|
|||||||||||||||||||||||||||||
|