|
|
|||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.18cot or ctg trigonometric cotangent functionCategory. Mathematics. Abstract. Trigonometric cotangent: definition, plot, properties, identities and table of values for some angles. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionCotangent of the angle is ratio of the ajacent leg to opposite one. 2. PlotCotangent is π periodic function defined everywhere on real axis, except its singular points πn, where n = 0, ±1, ±2, ... — so, function domain is (πn, π(n + 1)), n∈N. Its plot is depicted below — fig. 1. Fig. 1. Plot of the cotangent function y = cotx.Function codomain is entire real axis. 3. IdentitiesBase: csc2φ − cot2φ = 1and its consequences: cotφ = ±√(1 − sin2φ) /sinφcotφ = ±cosφ /√(1 − cos2φ) cotφ = ±1 /√(sec2φ − 1) cotφ = ±√(csc2φ − 1) By definition: cotφ ≡ cosφ /sinφ ≡ 1 /tanφProperties — symmetry, periodicity, etc.: cot−φ = −cotφcotφ = cot(φ + πn), where n = 0, ±1, ±2, ... cotφ = −cot(π − φ) cotφ = −tan(π + φ) cotφ = tan(π/2 − φ) Half-angle: cot(φ/2) = ±√[(1 + cosφ) /(1 − cosφ)]cot(φ/2) = sinφ /(1 − cosφ) cot(φ/2) = (1 + cosφ) /sinφ cot(φ/2) = cscφ + cotφ cotφ = [1 − tan2(φ/2)] /[2 tan(φ/2)] Double angle: cot(2φ) = (cot2φ − 1) /(2 cotφ)Triple angle: cot(3φ) = (3 cot2φ − cot3φ) /(1 − 3 cot2φ)Quadruple angle: cot(4φ) = (1 + cot4φ − 6 cot2φ) /(4 cot3φ − 4 cotφ)Power reduction: cot2φ = [1 + cos(2φ)] /[1 − cos(2φ)]cot3φ = [3 cosφ + cos(3φ)] /[3 sinφ − sin(3φ)] cot4φ = [3 + 4 cos(2φ) + cos(4φ)] /[3 − 4 cos(2φ) + cos(4φ)] cot5φ = [10 cosφ + 5 cos(3φ) + cos(5φ)] /[10 sinφ − 5 sin(3φ) + sin(5φ)] Sum and difference of angles: cot(φ + ψ) = (cotφ cotψ − 1) /(cotφ + cotψ)cot(φ − ψ) = (cotφ cotψ + 1) /(cotψ − cotφ) cot(φ + ψ + χ) = (cotφ + cotψ + cotχ − cotφ cotψ cotχ) /(1 − cotφ cotψ − cotφ cotχ − cotψ tanχ) Product: cotφ cotψ = [cos(φ − ψ) + cos(φ + ψ)] /[cos(φ − ψ) − cos(φ + ψ)]tanφ cotψ = [sin(φ + ψ) + sin(φ − ψ)] /[sin(φ + ψ) − sin(φ − ψ)] Sum: cotφ + cotψ = sin(φ + ψ) /(sinφ sinψ)cotφ − cotψ = sin(ψ − φ) /(sinφ sinψ) Cotangent of inverse functions: cot(arccot x) ≡ xcot(arcsin x) = √(1 − x2) /x cot(arccos x) = x /√(1 − x2) Some angles:
4. SupportTrigonometric cotangent function cot or ctg of the real argument is supported by free version of the Librow calculator. Trigonometric cotangent function cot or ctg of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate cotangent of the number:
To calculate cotangent of the current result:
To calculate cotangent of the angle φ in memory:
|
|||||||||||||||||||||||||||
|