|
|
||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.19coth or cth hyperbolic cotangent functionCategory. Mathematics. Abstract. Hyperbolic cotangent: definition, plot, properties and identities. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionHyperbolic cotangent is defined as cothx ≡ (ex + e−x) /(ex − e−x)2. PlotHyperbolic cotangent is antisymmetric function defined everywhere on real axis, except its singular point 0 — so, function domain is (−∞, 0)∪(0, +∞). Its plot is depicted below — fig. 1. Fig. 1. Plot of the hyperbolic cotangent function y = cothx.Function codomain is entire real axis with gap in the middle: (−∞, −1)∪(1, +∞). 3. IdentitiesBase: coth2x − csch2x = 1By definition: cothx ≡ coshx /sinhx ≡ 1 /tanhxProperty of antisymmetry: coth−x = −cothxHalf-argument: coth(x/2) = (1 + coshx) /sinhxcoth(x/2) = sinhx /(coshx − 1) cothx = [1 + tanh2(x/2)] /[2 tanh(x/2)] Doulbe argument: coth(2x) = (coth2x + 1) /(2 cothx)Triple argument: coth(3x) = (coth3x + 3 cothx) /(3 coth2x + 1)Quadruple argument: coth(4x) = (coth4x + 6 coth2x + 1) /(4 coth3x + 4 cothx + 1)Power reduction: coth2x = (cosh(2x) + 1) /(cosh(2x) − 1)coth3x = (cosh(3x) + 3 coshx) /(sinh(3x) − 3 sinhx) coth4x = (cosh(4x) + 4 cosh(2x) + 3) /(cosh(4x) − 4 cosh(2x) + 3) coth5x = (cosh(5x) + 5 cosh(3x) + 10 coshx) /(sinh(5x) − 5 sinh(3x) + 10 sinhx) Sum and difference of arguments: coth(x + y) = (1 + cothx cothy) /(cothx + cothy)coth(x − y) = (1 − cothx cothy) /(cothx − cothy) Product: cothx cothy = [cosh(x + y) + cosh(x − y)] /[cosh(x + y) − cosh(x − y)]Sum: cothx + cothy = sinh(x + y) /(sinhx sinhy)cothx − tanhy = sinh(y − x) /(sinhx sinhy) 4. SupportHyperbolic cotangent function coth or cth of the real argument is supported by free version of the Librow calculator. Hyperbolic cotangent function coth or cth of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate hyperbolic cotangent of the number:
To calculate hyperbolic cotangent of the current result:
To calculate hyperbolic cotangent of the number x in memory:
|
||||||||||||||||||||||||||
|