|
|
||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.27sinh or sh hyperbolic sine functionCategory. Mathematics. Abstract. Hyperbolic sine: definition, plot, properties and identities. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionHyperbolic sine is defined as sinhx ≡ (ex − e−x) /22. PlotHyperbolic sine is antisymmetric function defined everywhere on real axis. Its plot is depicted below — fig. 1. Fig. 1. Plot of the hyperbolic sine function y = sinhx.Function codomain is entire real axis. 3. IdentitiesBase: cosh2x − sinh2x = 1Connection to exponential function: sinhx + coshx = excoshx − sinhx = e−x By definition: sinhx ≡ 1 /cschxProperty of antisymmetry: sinh−x = −sinhxHalf-argument: sinh(x/2) = √[(coshx − 1) /2]sinhx = 2 tanh(x/2) /[1 − tanh2(x/2)] Double argument: sinh(2x) = 2 sinhx coshxTriple argument: sinh(3x) = 4 sinh3x + 3 sinhxQuadruple argument: sinh(4x) = 4 sinh3x coshx + 4 sinhx cosh3xPower reduction: sinh2x = (cosh(2x) − 1) /2sinh3x = (sinh(3x) − 3 sinhx) /4 sinh4x = (cosh(4x) − 4 cosh(2x) + 3) /8 sinh5x = (sinh(5x) − 5 sinh(3x) + 10 sinhx) /16 Sum and difference of arguments: sinh(x + y) = sinhx coshy + coshx sinhysinh(x − y) = sinhx coshy − coshx sinhy Product-to-sum: sinhx sinhy = [cosh(x + y) − cosh(x − y)] /2sinhx coshy = [sinh(x + y) + sinh(x − y)] /2 Sum-to-product: sinhx + sinhy = 2 sinh[(x + y) /2] cosh[(x − y) /2]sinhx − sinhy = 2 sinh[(x − y) /2] cosh[(x + y) /2] 4. SupportHyperbolic sine function sinh or sh of the real argument is supported by free version of the Librow calculator. Hyperbolic sine function sinh or sh of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate hyperbolic sine of the number:
To calculate hyperbolic sine of the current result:
To calculate hyperbolic sine of the number x in memory:
|
||||||||||||||||||||||||||
|