|
|
|||||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.28sin trigonometric sine functionCategory. Mathematics. Abstract. Trigonometric sine: definition, plot, properties, identities and table of values for some angles. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionSine of the angle is ratio of the opposite leg to hypotenuse. 2. PlotSine is 2π periodic function defined everywhere on real axis — so its wave-like plot spreads endlessly to the left and to the right. Fig. 1. Plot of the sine function y = sinx.Function codomain is limited to the range [−1, 1]. 3. IdentitiesBase: sin2φ + cos2φ = 1and its consequences: sinφ = ±√(1 − cos2φ)sinφ = ±tanφ /√(1 + tan2φ) sinφ = ±1 /√(1 + cot2φ) sinφ = ±√(sec2φ − 1) /secφ By definition: sinφ ≡ 1 /cscφProperties symmetry, periodicity, etc.: sin−φ = −sinφsinφ = sin(φ + 2πn), where n = 0, ±1, ±2, ... sinφ = sin(π − φ) sinφ = −sin(π + φ) sinφ = cos(π/2 − φ) Half-angle: sin(φ/2) = ±√[(1 − cosφ) /2]sinφ = 2 tan(φ/2) /[1 + tan2(φ/2)] Double angle: sin(2φ) = 2 sinφ cosφsin(2φ) = 2 tanφ /(1 + tan2φ) Triple angle: sin(3φ) = 3 cos2φ sinφ − sin3φ = 3 sinφ − 4 sin3φQuadruple angle: sin(4φ) = cosφ (4 sinφ − 8 sin3φ)Power reduction: sin2φ = [1 − cos(2φ)] /2sin3φ = [3 sinφ − sin(3φ)] /4 sin4φ = [3 − 4 cos(2φ) + cos(4φ)] /8 sin5φ = [10 sinφ − 5 sin(3φ) + sin(5φ)] /16 sin2φ cos2φ = [1 − cos(4φ)] /8 sin3φ cos3φ = [3 sin(2φ) − sin(6φ)] /32 sin4φ cos4φ = [3 − 4 cos(4φ) + cos(8φ)] /128 sin5φ cos5φ = [10 sin(2φ) − 5 sin(6φ) + sin(10φ)] /512 Sum and difference of angles: sin(φ + ψ) = sinφ cosψ + cosφ sinψsin(φ − ψ) = sinφ cosψ − cosφ sinψ Product-to-sum: sinφ sinψ = [cos(φ − ψ) − cos(φ + ψ)] /2sinφ cosψ = [sin(φ + ψ) + sin(φ − ψ)] /2 Sum-to-product: sinφ + sinψ = 2 sin[(φ + ψ) /2] cos[(φ − ψ) /2]sinφ − sinψ = 2 sin[(φ − ψ) /2] cos[(φ + ψ) /2] sinφ + sin(φ + ψ) + sin(φ + 2ψ) + ... + sin(φ + nψ) = sin[(n + 1) ψ/2] sin(φ + nψ/2) /sin(ψ/2) Sine of inverse functions: sin(arcsin x) ≡ xsin(arccos x) = √(1 − x2) sin(arctan x) = x /√(1 + x2) Some angles:
4. SupportTrigonometric sine function sin of the real argument is supported by free version of the Librow calculator. Trigonometric sine function sin of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate sine of the number:
To calculate sine of the current result:
To calculate sine of the angle φ in memory:
|
|||||||||||||||||||||||||||||
|