|
|
|||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.30tan or tg trigonometric tangent functionCategory. Mathematics. Abstract. Trigonometric tangent: definition, plot, properties, identities and table of values for some angles. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionTangent of the angle is ratio of the opposite leg to adjacent one. 2. PlotTangent is π periodic function defined everywhere on real axis, except its singular points π/2 + πn, where n = 0, ±1, ±2, ... — so, function domain is (−π/2 + πn, π/2 + πn), n∈N. Its plot is depicted below — fig. 1. Fig. 1. Plot of the tangent function y = tanx.Function codomain is entire real axis. 3. IdentitiesBase: sec2φ − tan2φ = 1and its consequences: tanφ = ±sinφ /√(1 − sin2φ)tanφ = ±√(1 − cos2φ) /cosφ tanφ = ±1 /√(csc2φ − 1) tanφ = ±√(sec2φ − 1) By definition: tanφ ≡ sinφ /cosφ ≡ 1 /cotφProperties symmetry, periodicity, etc.: tan−φ = −tanφtanφ = tan(φ + πn), where n = 0, ±1, ±2, ... tanφ = −tan(π − φ) tanφ = −cot(π + φ) tanφ = cot(π/2 − φ) Half-angle: tan(φ/2) = ±√[(1 − cosφ) /(1 + cosφ)]tan(φ/2) = sinφ /(1 + cosφ) tan(φ/2) = (1 − cosφ) /sinφ tan(φ/2) = cscφ − cotφ tanφ = 2 tan(φ/2) /[1 − tan2(φ/2)] Double angle: tan(2φ) = 2 tanφ /(1 − tan2φ)Triple angle: tan(3φ) = (3 tan2φ − tan3φ) /(1 − 3 tan2φ)Quadruple angle: tan(4φ) = (4 tanφ − 4 tan3φ) /(1 − 6 tan2φ + tan4φ)Power reduction: tan2φ = [1 − cos(2φ)] /[1 + cos(2φ)]tan3φ = [3 sinφ − sin(3φ)] /[3 cosφ + cos(3φ)] tan4φ = [3 − 4 cos(2φ) + cos(4φ)] /[3 + 4 cos(2φ) + cos(4φ)] tan5φ = [10 sinφ − 5 sin(3φ) + sin(5φ)] /[10 cosφ + 5 cos(3φ) + cos(5φ)] Sum and difference of angles: tan(φ + ψ) = (tanφ + tanψ) /(1 − tanφ tanψ)tan(φ − ψ) = (tanφ − tanψ) /(1 + tanφ tanψ) tan(φ + ψ + χ) = (tanφ + tanψ + tanχ − tanφ tanψ tanχ) /(1 − tanφ tanψ − tanφ tanχ − tanψ tanχ) Product: tanφ tanψ = [cos(φ − ψ) − cos(φ + ψ)] /[cos(φ − ψ) + cos(φ + ψ)]tanφ cotψ = [sin(φ + ψ) + sin(φ − ψ)] /[sin(φ + ψ) − sin(φ − ψ)] Sum: tanφ + tanψ = sin(φ + ψ) /(cosφ cosψ)tanφ − tanψ = sin(φ − ψ) /(cosφ cosψ) Tangent of inverse functions: tan(arctan x) ≡ xtan(arcsin x) = x /√(1 − x2) tan(arccos x) = √(1 − x2) /x Some angles:
4. SupportTrigonometric tangent function tan or tg of the real argument is supported by free version of the Librow calculator. Trigonometric tangent function tan or tg of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate tangent of the number:
To calculate tangent of the current result:
To calculate tangent of the angle φ in memory:
|
|||||||||||||||||||||||||||
|