|
|
||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.31tanh or th hyperbolic tangent functionCategory. Mathematics. Abstract. Hyperbolic tangent: definition, plot, properties and identities. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionHyperbolic tangent is defined as tanhx ≡ (ex − e−x) /(ex + e−x)2. PlotHyperbolic tangent is antisymmetric function defined everywhere on real axis. Its plot is depicted below — fig. 1. Fig. 1. Plot of the hyperbolic tangent function y = tanhx.Function codomain is limited to the range (−1, 1). 3. IdentitiesBase: tanh2x + sech2x = 1By definition: tanhx ≡ sinhx /coshx ≡ 1 /cothxProperty of antisymmetry: tanh−x = −tanhxHalf-argument: tanh(x/2) = (coshx − 1) /sinhxtanh(x/2) = sinhx /(1 + coshx) tanhx = 2 tanh(x/2) /[1 + tanh2(x/2)] Double argument: tanh(2x) = 2 tanhx /(tanh2x + 1)Triple argument: tanh(3x) = (tanh3x + 3 tanhx) /(3 tanh2x + 1)Quadruple argument: tanh(4x) = (4 tanh3x + 4 tanhx) /(tanh4x + 6 tanh2x + 1)Power reduction: tanh2x = (cosh(2x) − 1) /(cosh(2x) + 1)tanh3x = (sinh(3x) − 3 sinhx) /(cosh(3x) + 3 coshx) tanh4x = (cosh(4x) − 4 cosh(2x) + 3) /(cosh(4x) + 4 cosh(2x) + 3) tanh5x = (sinh(5x) − 5 sinh(3x) + 10 sinhx) /(cosh(5x) + 5 cosh(3x) + 10 coshx) Sum and difference of arguments: tanh(x + y) = (tanhx + tanhy) /(1 + tanhx tanhy)tanh(x − y) = (tanhx − tanhy) /(1 − tanhx tanhy) Product: tanhx tanhy = [cosh(x + y) − cosh(x − y)] /[cosh(x + y) + cosh(x − y)]Sum: tanhx + tanhy = sinh(x + y) /(coshx coshy)tanhx − tanhy = sinh(x − y) /(coshx coshy) 4. SupportHyperbolic tangent function tanh or th of the real argument is supported by free version of the Librow calculator. Hyperbolic tangent function tanh or th of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate hyperbolic tangent of the number:
To calculate hyperbolic tangent of the current result:
To calculate hyperbolic tangent of the angle x in memory:
|
||||||||||||||||||||||||||
|