|
|
||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.33Γ or Gamma gamma functionCategory. Mathematics. Abstract. Gamma function: definition, graph, properties and identities. Reference. This article is a part of Librow professional formula calculator project. See also. Special case of integer numbers — factorial n!. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionGamma function is defined as integral or 2. PlotGamma function defined everywhere on real axis, except its singular points n = 0, −1, −2, ... — so, function domain is ...∪(−2, −1)∪(−1, 0)∪(0, +∞). Its plot is depicted below — fig. 1. Fig. 1. Plot of the gamma function y = Γ(x).Function codomain is entire real axis except 0: (−∞, 0)∪(0, +∞). 3. IdentitiesConnection to factorial: Γ(n) = (n − 1)!Factorial-like properties: Γ(x + 1) = x Γ(x) Γ(1 − x) = −x Γ(−x)Extension to negative half-axis: Γ(1 − x) = π/[Γ(x) sin(πx)]Doulbe argument: Γ(2x) = (2π)−1/2 22x − 1/2 Γ(x) Γ(x + 1/2)Triple argument: Γ(3x) = (2π)−1 33x − 1/2 Γ(x) Γ(x + 1/3) Γ(x + 2/3)Quadruple argument: Γ(4x) = (2π)−3/2 44x − 1/2 Γ(x) Γ(x + 1/4) Γ(x + 1/2) Γ(x + 3/4)Genaral formula for multiple argument: Γ(nx) = (2π)(1−n)/2 nnx − 1/2 Γ(x) Γ(x + 1/n) ... Γ(x + (n − 1)/n)Half-integer argument: Γ(−5 /2) = −8 /15 √πΓ(−3 /2) = 4 /3 √π Γ(−1 /2) = −2 √π Γ(1 /2) = √π Γ(3 /2) = 1 /2 √π Γ(5 /2) = 3 /4 √π and in general: Γ(1/2 + n) = (2n − 1)!! /2n√π = 1 × 3 × 5 × ... × (2n − 1) /2n√πfor negative values: Γ(1/2 − n) = (−1)n2n/(2n − 1)!! √π = (−1)n2n/[1 × 3 × 5 × ... × (2n − 1)] √πas well, for positive odd n: Γ(n /2) = (n − 2)!! /2(n − 1)/2 √πand for negative odd n: Γ(n /2) = (−1)(n + 1)/2 2(n + 1)/2/n!! √π4. SupportGamma function Γ or Gamma of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate gamma function of the number:
or
To calculate gamma function of the current result:
or
To calculate gamma function of the number x in memory:
or
|
||||||||||||||||||||||||||
|