|
|
||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.6arcsch arc-hyperbolic cosecant functionCategory. Mathematics. Abstract. Arc-hyperbolic cosecant: definition, plot, properties and identities. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionArc-hyperbolic cosecant is inverse of hyperbolic cosecant function. With the help of natural logarithm it can be represented as: arcschx ≡ ln[1/x + √(1/x2 + 1)]2. PlotArc-hyperbolic cosecant is antisymmetric function defined everywhere on real axis, except its singular point 0 — so, its domain is (−∞, 0)∪(0, +∞). Function plot is depicted below — fig. 1. Fig. 1. Plot of the arc-hyperbolic cosecant function y = arcschx.Function codomain is entire real axis, except 0: (−∞, 0)∪(0, +∞). 3. IdentitiesProperty of antisymmetry: arcsch−x = −arcschxReciprocal argument: arcsch(1/x) = arsinhxSum and difference: arcschx + arcschy = arcsch{xy / [x√(1 + 1 /x2) + y√(1 + 1 /y2)]}arcschx − arcschy = arcsch{xy / [y√(1 + 1 /y2) − x√(1 + 1 /x2)]} 4. SupportArc-hyperbolic cosecant function arcsch of the real argument is supported by free version of the Librow calculator. Arc-hyperbolic cosecant function arcsch of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate arc-hyperbolic cosecant of the number:
To calculate arc-hyperbolic cosecant of the current result:
To calculate arc-hyperbolic cosecant of the number x in memory:
|
||||||||||||||||||||||||||
|