The Art of Interface

Article 11 — Appendix A.6

arcsch — arc-hyperbolic cosecant function

Category. Mathematics.

Abstract. Arc-hyperbolic cosecant: definition, plot, properties and identities.

Reference. This article is a part of Librow scientific formula calculator project.

Librow Calculator Pro

Limited offer

Professional Librow Calculatorvisit

for free

  • Bessel functions
  • gamma function
  • complex numbers
Download
7.4 MB for Windows

1. Definition

Arc-hyperbolic cosecant is inverse of hyperbolic cosecant function. With the help of natural logarithm it can be represented as:

arcschx ≡ ln[1/x + √(1/x2 + 1)]

2. Plot

Arc-hyperbolic cosecant is antisymmetric function defined everywhere on real axis, except its singular point 0 — so, its domain is (−∞, 0)∪(0, +∞). Function plot is depicted below — fig. 1.

Fig. 1. Plot of the arc-hyperbolic cosecant function y = arcsch x. Fig. 1. Plot of the arc-hyperbolic cosecant function y = arcschx.

Function codomain is entire real axis, except 0: (−∞, 0)∪(0, +∞).

3. Identities

Property of antisymmetry:

arcsch−x = −arcschx

Reciprocal argument:

arcsch(1/x) = arsinhx

Sum and difference:

arcschx + arcschy = arcsch{xy / [x√(1 + 1 /x2) + y√(1 + 1 /y2)]}
arcschx − arcschy = arcsch{xy / [y√(1 + 1 /y2) − x√(1 + 1 /x2)]}

4. Support

Arc-hyperbolic cosecant function arcsch of the real argument is supported by free version of the Librow calculator.

Arc-hyperbolic cosecant function arcsch of the complex argument is supported by professional version of the Librow calculator.

5. How to use

To calculate arc-hyperbolic cosecant of the number:

arcsch(-1);

To calculate arc-hyperbolic cosecant of the current result:

arcsch(rslt);

To calculate arc-hyperbolic cosecant of the number x in memory:

arcsch(mem[x]);