| 
 | 
 | ||||||||||||||||||||||||||
| The Art of Interface | Article 11 — Appendix A.5arcosh or arch  arc-hyperbolic cosine functionCategory. Mathematics. Abstract. Arc-hyperbolic cosine: definition, plot, properties and identities. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
 
   Download 7.4 MB for Windows 1. DefinitionArc-hyperbolic cosine is inverse of hyperbolic cosine function. With the help of natural logarithm it can be represented as:arcoshx ≡ ln[x + √(x2 − 1)] 2. PlotArc-hyperbolic cosine is monotone function defined in the range [1, +∞). Its plot is depicted below — fig. 1.  Fig. 1. Plot of the arc-hyperbolic cosine function y = arcoshx. Function codomain is non-negative part of real axis: [0, +∞). 3. IdentitiesReciprocal argument:arcosh(1/x) = arsechx Sum and difference:arcoshx + arcoshy = arcosh{xy + √[(x2 − 1)(y2 − 1)]} arcoshx − arcoshy = arcosh{xy − √[(x2 − 1)(y2 − 1)]} arsinhx + arcoshy = arsinh{xy + √[(x2 + 1)(y2 − 1)]} = arcosh[y√(x2 + 1) + x√(y2 − 1)] 4. SupportArc-hyperbolic cosine function arcosh or arch of the real argument is supported by free version of the Librow calculator. Arc-hyperbolic cosine function arcosh or arch of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate arc-hyperbolic cosine of the number: To calculate arc-hyperbolic cosine of the current result: To calculate arc-hyperbolic cosine of the number x in memory:  | ||||||||||||||||||||||||||
| 
 | |||||||||||||||||||||||||||