|
|
|||||||||||||||||||||||||||
The Art of Interface |
Article 11 — Appendix A.7arcsec trigonometric arc secant functionCategory. Mathematics. Abstract. Trigonometric arc secant: definition, plot, properties, identities and table of values for some arguments. Reference. This article is a part of Librow scientific formula calculator project. Limited offerProfessional Librow Calculatorvisitfor free
Download
7.4 MB for Windows 1. DefinitionArc secant is inverse of the secant function. 2. PlotArc secant is discontinuous function defined on entire real axis except the (−1, 1) range — so, its domain is (−∞, −1]∪[1, +∞). Function plot is depicted below — fig. 1. Fig. 1. Plot of the arc secant function y = arcsecx.Function codomain is limited to the range [0, π/2)∪(π/2, π]. 3. IdentitiesComplementary angle: arcsecx + arccscx = π/2and as consequence: arcsec csc φ = π/2 − φNegative argument: arcsec(−x) = π − arcsecxReciprocal argument: arsec(1/x) = arccosxSum and difference: arcsecx + arcsecy = arcsec(xy /{1 − xy√[(1 − 1 /x2)(1 − 1 /y2)]})arcsecx − arcsecy = arcsec(xy /{1 + xy√[(1 − 1 /x2)(1 − 1 /y2)]}) Some argument values:
4. SupportTrigonometric arc secant function arcsec of the real argument is supported by free version of the Librow calculator. Trigonometric arc secant function arcsec of the complex argument is supported by professional version of the Librow calculator. 5. How to useTo calculate arc secant of the number:
To calculate arc secant of the current result:
To calculate arc secant of the number x in memory:
|
|||||||||||||||||||||||||||
|